
Lecture 07.05
by Marina Barsky

Designing Algorithms
with Edit Graph

Longest Common Subsequence

Recap: Useful abstraction: edit graph

t

a

c

a

S1

a t c aS2

j

i

An edit graph for a pair of
strings S1 and S2 has
(N+1)*(M+1) vertices, each
labeled with a corresponding
pair (i,j),
0 ≤ i ≤ N, 0 ≤ j ≤ M

The edges are directed and
their weight depends on the
specific string problem: for
the edit distance problem –
red edges have cost 0, black
edges have cost 1

0,0 0,1 0,2 0,3 0,4

1,0

2,0

3,0

4,0

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

The cost of a cheapest
path from vertex (0,0) to
vertex (N,M) in this edit
graph corresponds to the
edit distance between S1
and S2, and the path itself
represents a series of edit
operations and an optimal
alignment of S1 with S2

The cheapest path in the edit graph

t

a

c

a

S1

a t c aS2

j

i

0,0 0,1 0,2 0,3 0,4

1,0

2,0

3,0

4,0

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Motivation: sequence similarity

❏ Life is based on a repertoire of successful structural and
interrelated building blocks which are passed around

❏ Biological universality occurs at many levels of details, so
we can compare not only the sequence data, but 3D shapes,
chemical pathways, morphological features etc.

“Everything in life is so similar that the same genes that work
in flies are the ones that work in humans” (Wieschaus, 1995)

Why compare biosequences

❏ The biological sequences (DNA, RNA or protein) encode
and reflect the higher-level molecular structures and
mechanisms

❏ High sequence similarity usually implies significant
structural and functional similarity

❏ A tractable, though partly heuristic way to infer structure
and function of an unknown protein is to search for the
similar known proteins at the sequence level: similar but not
identical!

Note of caution in interpreting
sequence similarity

❏ There is not a one-to-one correspondence between similar
sequences and similar structures or between sequences and
functions:
❏ Quite similar structures can be obtained from

completely unrelated sequences
❏ Very similar sequences can produce very different

structures depending on the location of a change

Edit distance as a measure of
similarity

S1 a - c a t

S2 a t c a -

If the number of basic evolutionary events is small, we
infer that the divergence between S1 and S2 happened not
so long time ago, and that the two strings are still similar

The smaller is the edit distance between 2 strings, the
more similar they are

Optimal alignment

S1 a - c a t

S2 a t c a -

Evolutionary explanation:

S2 evolved from S1 by a series of the following mutations:

Insertion of nucleotide t at position 2

Deletion of nucleotide t at position 5

An optimal alignment is not unique

S1 - a t t a a g

S2 t a - t c a g

S1 - a t t a a g

S2 t a t c a - g

2 different alignments with the optimal minimal cost 3

The exact sequence of changes (mutations) cannot be
determined

The edit-distance based similarity
metric

S a c c g c

S1 a c g c

The smaller is the edit distance, the larger is the

similarity.

S is more similar to S1 than to S2

S a c c g c

S2 c c g t

Edit distance: 1 Edit distance: 2

The edit-distance based similarity
metric: not enough

S a c c g c

S1 a c t c

S a c c g c

S2 a c c c t g c

The edit distance alone is not always a sufficient metric to characterize

similarity between strings

In these 2 examples, the edit distance between S and S1 is the same as

an edit distance between S and S2, but it is intuitively clear that S is

more similar to S2 than to S1, since they share more identical

characters

We want to evaluate what was preserved rather than what changed to

infer similarity

The longest common substring

• The longest substring, common to both strings:

the longest sequence of consecutive

characters which occur in both strings

The longest sequence of consecutive matches

S a c c g c

S1 a c t c

S a c c g c

S2 a c c c t g c

The longest common subsequence

❏ A subsequence of a string S is a subset of

characters of S in their original relative order.

A subsequence does not need to consist of

the consecutive characters of S

❏ Given 2 strings S1 and S2, a common
subsequence for 2 strings is a subsequence which
appears both in S1 and S2

❏ The longest common subsequence is a longest

between all possible subsequences of S1 and S2

Substring vs subsequence

w i n t e r s

w i n t e r s

w i n t e r s

its – a subsequence of winters

inter – both substring and subsequence of

winters

m a d b u n n y

b a d m o n e y

(LCS)

m a d b u n n y

b a d m o n e y

How can we be sure that adny is the longest

common subsequence?

Common subsequence of length 4

Common subsequence of length 3

Longest Common Subsequence

The LCS problem

Input: 2 strings S1 and S2

Output: the length of the longest subsequence
common to both strings along with the sub-
sequence itself

Edit Graph for LCS problem

An edit graph for a pair of
strings S1 and S2 can be used
to solve the LCS problem

We need to change edge
weights: in the LCS problem
we are only interested in a
sequence of matches – red
edges have cost 1, black
edges have cost 0

t

a

c

a

S1

a t c aS2

j

i

0,0 0,1 0,2 0,3 0,4

1,0

2,0

3,0

4,0

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Dynamic Programming solution for LCS.
Edit graph

Since we are interested in a

longest sequence of matches,

we give to the red edges cost 1

and to all the other edges cost 0

Since aligning 2 different

characters does not contribute

to the total score we do not

consider the diagonal edges in

case of mismatch

1

0

0 0

0

b a d m o n e y

0

m

a

d

b

u

n

n

y

The LCS problem can be

reduced to finding the

greediest (the longest)

path through matches -

the path with the largest

cost

1

0

0 0

0

Dynamic Programming solution for LCS.
Greedy path

b a d m o n e y

0

m

a

d

b

u

n

n

y

All the black edges are of
cost 0, so moving strictly
right or down gives paths of
a total cost 0

1

0

0 0

0

Base condition

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0

a 0

d 0

b 0

u 0

n 0

n 0

y 0

LCS. Recurrence relation

COST(i-1,j)

COST(i,j)=max COST(i,j-1)

COST(i-1,j-1)+1 if S1[i]=S2[j]

We only consider the
diagonal edge if the
characters match

Tabular computation. Row 1

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0

d 0

b 0

u 0

n 0

n 0

y 0

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0

b 0

u 0

n 0

n 0

y 0

Alternative path

Tabular computation. Row 2

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0

u 0

n 0

n 0

y 0

Tabular computation. Row 3

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0

n 0

n 0

y 0

Tabular computation. Row 4

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0

y 0

Tabular computation. Rows 5,6

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0 1 1 2 2 2 3 3 3

y 0 1 1 2 2 2 3 3 4

Read the length of the

longest common

subsequence in cell [N][M]

Tabular computation. End

LCS. Traceback

j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0 1 1 2 2 2 3 3 3

y 0 1 1 2 2 2 3 3 4

Find the subsequence

itself tracing the

sequence of matches

backwards

LCS. Alignment

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0 1 1 2 2 2 3 3 3

y 0 1 1 2 2 2 3 3 4

j

i S1 - m a d - - b u n n - y

S2 b - a d m o - - - n e y

Note, that only the matches

are aligned, since the problem

we are solving – find the

longest sequence of matches

We don’t count the number of

edit operations, since their cost

in this model is 0

The edit-distance based similarity metric:
not enough

S a c c g c

S1 a c t c

S a c c g c

S2 a c c c t g c

In these 2 examples, the edit distance between S and S1 is

the same as an edit distance between S and S2, but it is

intuitively clear that S is more similar to S2 than to S1, since

they share more identical characters

The LCS-based similarity metric:
not enough

S a c c c

S1 a c - c

S a - c c - - c

S2 a t c - t g c

The longer is the LCS, the more similar are two strings

The LCS alone is not a sufficient similarity metric

We want to score both the matches and the differences

In these 2 examples, the LCS of S and S1 is the same as the LCS
of S and S2, but it is intuitively clear that S is more similar to
S1 than to S2, since they have less different characters

Basic optimal alignment scores

S2 t g c a t a

S1

a

t

c

t

g

a

t

Let us set the simplest weights of the

edges:

For a match: award of 1

For a mismatch: penalty of -1

For a gap (insertion/deletion):

penalty of -1

Then the maximum cost of the path in the

edit graph will give a numerical score of

the similarity between S1 and S2: large

positive values – two strings are similar,

negative or low positive values – the

strings are different

1-1

-1

Everything else is exactly the same

-1

Exercise. Longest Increasing Subsequence
(LIS)

• Given a sequence of n numbers A1 . . . An, determine a
subsequence (not necessarily contiguous) of maximum
length in which the values in the subsequence form a strictly
increasing sequence.

Exercise. LIS - solution

• Given a sequence of n numbers A1 . . . An, determine a
subsequence (not necessarily contiguous) of maximum
length in which the values in the subsequence form a strictly
increasing sequence.

• This problem can be reduced to the LCS between A1 . . . An,
and sorted(A1 . . . An)

• If sequence A contains a permutation of all numbers from 1
to n – then the solution is just LCS between sequence values
and indices.

