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Designing Algorithms 
with Edit Graph

Longest Common Subsequence



Recap: Useful abstraction: edit graph
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An edit graph for a pair of  
strings S1 and S2 has  
(N+1)*(M+1) vertices,  each 
labeled with a  corresponding 
pair (i,j), 
0 ≤ i ≤ N, 0 ≤ j ≤ M

The edges are directed and 
their weight depends  on the 
specific string  problem: for 
the edit  distance problem –
red  edges have cost 0, black  
edges have cost 1
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The cost of a  cheapest 
path from vertex (0,0) to 
vertex  (N,M) in this edit  
graph corresponds to  the 
edit distance between S1 
and S2,  and the path itself  
represents a series of  edit 
operations and an optimal 
alignment of S1 with S2

The cheapest path in the edit graph
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Motivation: sequence similarity

❏ Life is based on a repertoire of successful structural and 
interrelated building blocks which are passed around 

❏ Biological universality occurs at many levels of details, so 
we can compare not only the sequence data, but 3D shapes, 
chemical pathways, morphological features etc.

“Everything in life is so similar that the same genes that work 
in flies are the ones that work in humans” (Wieschaus, 1995)



Why compare biosequences

❏ The biological sequences (DNA, RNA or protein) encode 
and reflect the higher-level molecular structures and 
mechanisms

❏ High sequence similarity usually implies significant 
structural and functional similarity

❏ A tractable, though partly heuristic way to infer structure 
and function of an unknown protein is to search for the 
similar known proteins at the sequence level: similar but not 
identical!



Note of caution in interpreting 
sequence similarity

❏ There is not a one-to-one correspondence between similar 
sequences and similar structures or between sequences and 
functions:
❏ Quite similar structures can be obtained from 

completely unrelated sequences
❏ Very similar sequences can produce very different 

structures depending on the location of a change



Edit distance as a measure of 
similarity

S1 a - c a t

S2 a t c a -

If the number of basic evolutionary events is small, we 
infer that the divergence between S1 and S2 happened not 
so long time ago, and that the two strings are still similar

The smaller is the edit distance between 2 strings, the 
more similar they are



Optimal alignment 

S1 a - c a t

S2 a t c a -

Evolutionary explanation:

S2 evolved from S1 by a series of the following mutations:  

Insertion of nucleotide t at position 2

Deletion of nucleotide t at position 5



An optimal alignment is not  unique

S1 - a t t a a g

S2 t a - t c a g

S1 - a t t a a g

S2 t a t c a - g

2 different alignments with the optimal minimal cost 3

The exact sequence of changes (mutations) cannot be 
determined



The edit-distance based similarity  
metric

S a c c g c

S1 a c g c

The smaller is the edit distance, the larger is the 

similarity.

S is more similar to S1 than to S2

S a c c g c

S2 c c g t

Edit distance: 1 Edit distance: 2



The edit-distance based similarity  
metric: not enough

S a c c g c

S1 a c t c

S a c c g c

S2 a c c c t g c

The edit distance alone is not always a sufficient metric to characterize 

similarity between strings

In these 2 examples, the edit distance between S and S1 is the same as 

an edit distance between S and S2, but it is intuitively clear that S is 

more similar to S2 than to S1, since they share more identical  

characters

We want to evaluate what was preserved rather than what changed to 

infer similarity



The longest common substring

• The longest substring, common to both strings:

the longest sequence of consecutive  

characters which occur in both strings

The longest sequence of consecutive matches

S a c c g c

S1 a c t c

S a c c g c

S2 a c c c t g c



The longest common subsequence

❏ A subsequence of a string S is a subset of  

characters of S in their original relative order.

A subsequence does not need to consist of 

the consecutive characters of S

❏ Given 2 strings S1 and S2, a common  
subsequence for 2 strings is a subsequence which  
appears both in S1 and S2

❏ The longest common subsequence is a longest  

between all possible subsequences of S1 and S2



Substring vs subsequence

w i n t e r s

w i n t e r s

w i n t e r s

its – a subsequence of winters

inter – both substring and subsequence of

winters



m a d b u n n y

b a d m o n e y

(LCS)

m a d b u n n y

b a d m o n e y

How can we be sure that adny is the longest 

common subsequence?

Common subsequence of length 4

Common subsequence of length 3

Longest Common Subsequence



The LCS problem

Input: 2 strings S1 and S2

Output: the length of the longest subsequence 
common to both strings along with the sub-
sequence itself



Edit Graph for LCS problem

An edit graph for a pair of  
strings S1 and S2 can be used 
to solve the LCS problem

We need to change edge 
weights: in the LCS problem 
we are only interested in a 
sequence of matches – red  
edges have cost 1, black  
edges have cost 0
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Dynamic Programming solution for LCS. 
Edit graph

Since we are interested in a  

longest sequence of matches,  

we give to the red edges cost 1  

and to all the other edges cost 0

Since aligning 2 different  

characters does not contribute  

to the total score we do not  

consider the diagonal edges in  

case of mismatch
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The LCS problem can be  

reduced to finding the  

greediest (the longest)  

path through matches -

the path with the largest  

cost

1

0

0 0

0

Dynamic Programming  solution for LCS. 
Greedy path
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All the black edges are of  
cost 0, so moving strictly  
right or down gives paths of 
a total cost 0

1

0

0 0

0

Base condition

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0

a 0

d 0

b 0

u 0

n 0

n 0

y 0



LCS. Recurrence relation

COST(i-1,j)

COST(i,j)=max COST(i,j-1)

COST(i-1,j-1)+1 if S1[i]=S2[j]

We only consider the 
diagonal edge if the 
characters match



Tabular computation. Row 1
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b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0

d 0

b 0

u 0

n 0

n 0

y 0



j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0

b 0

u 0

n 0

n 0

y 0

Alternative path

Tabular computation. Row 2



j
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b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0

u 0

n 0

n 0

y 0

Tabular computation. Row 3
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b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0

n 0

n 0

y 0

Tabular computation. Row 4



j

i

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0

y 0

Tabular computation. Rows 5,6



j
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b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0 1 1 2 2 2 3 3 3

y 0 1 1 2 2 2 3 3 4

Read the length of the  

longest common  

subsequence in cell [N][M]

Tabular computation. End



LCS. Traceback

j
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b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0 1 1 2 2 2 3 3 3

y 0 1 1 2 2 2 3 3 4

Find the subsequence  

itself tracing the  

sequence of matches  

backwards



LCS. Alignment

b a d m o n e y

0 0 0 0 0 0 0 0 0

m 0 0 0 0 1 1 1 1 1

a 0 0 1 1 1 1 1 1 1

d 0 0 1 2 2 2 2 2 2

b 0 1 1 2 2 2 2 2 2

u 0 1 1 2 2 2 2 2 2

n 0 1 1 2 2 2 3 3 3

n 0 1 1 2 2 2 3 3 3

y 0 1 1 2 2 2 3 3 4

j

i S1 - m a d - - b u n n - y

S2 b - a d m o - - - n e y

Note, that only the matches 

are aligned, since the problem  

we are solving – find the  

longest sequence of matches

We don’t count the number of  

edit operations, since their cost  

in this model is 0



The edit-distance based similarity metric: 
not enough

S a c c g c

S1 a c t c

S a c c g c

S2 a c c c t g c

In these 2 examples, the edit distance between S and S1 is 

the same as an edit distance between S and S2, but it is 

intuitively clear that S is more similar to S2 than to S1, since 

they share more identical characters



The LCS-based similarity metric: 
not enough

S a c c c

S1 a c - c

S a - c c - - c

S2 a t c - t g c

The longer is the LCS, the more similar are two strings  

The LCS alone is not a sufficient similarity metric

We want to score both the matches and the differences

In these 2 examples, the LCS of S and S1 is the same as the LCS 
of S and S2, but it is intuitively clear that S is more similar to 
S1 than to S2,  since they have less different characters



Basic optimal alignment scores

S2 t g c a t a

S1

a

t

c

t

g

a

t

Let us set the simplest weights of the  

edges:

For a match: award of 1

For a mismatch: penalty of -1  

For a gap (insertion/deletion): 

penalty of -1

Then the maximum cost of the path in  the 

edit graph will give a numerical score of 

the similarity between S1 and S2: large 

positive values – two strings are similar, 

negative or low positive values – the 

strings are different

1-1

-1

Everything else is exactly the same

-1



Exercise. Longest Increasing Subsequence 
(LIS)

• Given a sequence of n numbers A1 . . . An, determine a 
subsequence (not necessarily contiguous) of maximum 
length in which the values in the subsequence form a strictly 
increasing sequence.



Exercise. LIS - solution

• Given a sequence of n numbers A1 . . . An, determine a 
subsequence (not necessarily contiguous) of maximum 
length in which the values in the subsequence form a strictly 
increasing sequence.

• This problem can be reduced to the LCS between A1 . . . An, 
and sorted(A1 . . . An)

• If sequence A contains a permutation of all numbers from 1 
to n – then the solution is just LCS between sequence values 
and indices.


